Astronomie en générale

RETROUVEZ L'ASTRONOMIE EN GENERAL

 

Les éphémérides de 2017

  • Astronomie en générale/ Une planète monstre découverte près d'une étoile naine

    La découverte d'une Jupiter chaude, l'exoplanète NGTS-1b, rend perplexes les astrophysiciens. En effet, celle-ci est bien trop grosse pour sa naine rouge de type M, ce qui va conduire à une révision des modèles de formation des planètes.

    CE QU'IL FAUT RETENIR

    • NGTS-1b est une exoplanète située à environ 600 années-lumière de la Terre et orbitant autour d’une naine rouge de type M.
    • De la taille de Jupiter et possédant 80 % de sa masse environ, NGTS-1b est bien trop grosse pour avoir pu naître autour de son étoile, moins lumineuse que le Soleil avec la moitié de sa masse et celle de son rayon, d'après les modèles de formation des planètes. Les astrophysiciens doivent revoir leur copie.

    Lorsque l'annonce de la découverte de 51 Pegasi b  a été faite en 1995, beaucoup d'astrophysiciens ont été surpris car il n'était pas très courant d'envisager des processus de migration planétaire capables d'aboutir à l'existence des Jupiter chaudes comme cette exoplanète, la première découverte autour d'une étoile de la séquence principale (mais pas la première exoplanète découverte).

    Les spécialistes de la cosmogonie planétaire ont donc dû dépoussiérer leurs cartons pour considérer et développer des modèles de formation de géantes gazeuses capables de rendre compte de l'existence des nombreux cas que l'on allait découvrir par la suite, que ce soit avec la méthode des transits planétaires ou celle des vitesses radiales.

    Or, voici qu'une équipe internationale d'astronomes des universités de Warwick, Leicester, Cambridge, de la Queen's University Belfast, de l'observatoire de Genève, du DLR Berlin et de l'Universidad de Chile vient d'annoncer qu'elle venait de faire la découverte d'une autre Jupiter chaude qui bouleverse à nouveau la cosmogonie et qui va forcer les planétologues à revoir leur copie, comme on peut le voir dans un article déposé sur arXiv.

    Une vidéo de présentation du Next-Generation Transit Survey (NGTS). Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © European Southern Observatory (ESO)

    Le premier objet découvert par le Next-Generation Transit Survey (NGTS)

    La découverte est doublement stupéfiante :

    • d'abord parce qu'il s'agit d'une exoplanète dont la taille est la plus grande découverte relativement à son étoile hôte, tellement qu'elle ne cadre pas avec les scénarios standard de la formation des géantes gazeuses ;
    • ensuite, parce que cet oiseau rare est le premier découvert par un nouvel instrument : le Next-Generation Transit Survey, ou NGTS.

    Ce dernier est un ensemble de 12 télescopes de 20 cm de diamètre qui sont robotisés et entrés en service récemment à l'observatoire de Paranal de l'ESO, au nord du Chili. Il est spécialisé dans la détection des transits planétaires depuis le sol ; c'est donc un cousin de Kepler qui, lui, chasse avec la même technique des exoplanètes mais depuis l'espace.

    Le NGTS a pour mission de découvrir des planètes de la taille de Neptune, ainsi que des planètes dont le diamètre est compris entre deux et huit diamètres terrestres en surveillant en permanence la luminosité de centaines de milliers d'étoiles relativement brillantes du ciel austral.

    NGTS-1b, la Jupiter chaude qui ne devrait pas exister

    Située à environ 600 années-lumière de la Terre et orbitant autour d'une naine rouge de type M (ce genre d'étoile est majoritaire dans la Voie lactée), NGTS-1b est donc tombée récemment dans les filets des astronomes. On a pu déterminer sa masse en plus de son rayon en utilisant la méthode des vitesses radiales en complément. On sait donc que c'est une exoplanète de la taille de Jupiter, possédant 80 % de sa masse environ et bouclant son orbite en seulement 2,6 jours. Bien que la naine rouge soit moins lumineuse que le Soleil, avec la moitié de sa masse et de son rayon, comme la distance de NGTS-1b à son étoile est de seulement 3 % de celle de la Terre au Soleil, sa température moyenne est de 530 °C, soit 800 kelvins.

    Les chercheurs ont, pour le moment, beaucoup de mal à s'expliquer la présence d'une exoplanète aussi grosse par rapport à son étoile car les modèles de formation des systèmes planétaires indiquent que des petites étoiles ne devaient pas avoir assez de matière dans le disque protoplanétaire pour faire naître des géantes gazeuses. Il est vrai cependant que, même dans le cas du Système solaire, on ne comprend pas aussi bien qu'on le voudrait comment Jupiter et Saturne, tout comme Neptune et Uranus, ont pris naissance. Des processus d'instabilité gravitationnelle conduisant à un effondrement direct de certaines régions dans le disque protoplanétaire ont été considérés à plusieurs reprises. Peut-être que la découverte de NGTS-1b nous aidera à y voir plus clair. Il semble probable que celle-ci ne soit pas un cas isolé, pour avoir été repérée aussi vite et qu'elle soit aussi proche du Soleil.

     

    Esocast : comment les exoplanètes sont-elles détectées ?  Les découvertes d'exoplanètes, qui tournent autour d'autres étoiles, se multiplient. Les scientifiques de l’Eso (European southern observatory ou Observatoire européen austral) utilisent diverses techniques afin de les mettre en évidence. Les explications dans cet épisode d’Esocast. 

    Vous avez aimé cet article ? N'hésitez pas à le partager avec vos ami(e)s et aidez-nous à faire connaître Astro Photo Météo 53 :) ! La Rédaction vous remercie.

    Lire la suite

  • Astronomie en générale/ La révolution du télescope pour amateur !!

    L'eVscope d'Unistellar, une révolution pour l'astronomie amateur

    Le télescope de la société Unistellar est destiné à démocratiser l'accès au ciel profond pour les amateurs d'astronomie tout en faisant de la science citoyenne à grande échelle. L'eVscope est pleinement financé sur Kickstarter.

    CE QU'IL FAUT RETENIR

    • Développé par la société française Unistellar, l'eVscope est un télescope formant rapidement des images en couleurs de galaxies et nébuleuses.
    • L'eVscope reconnaît les objets qu'il observe.
    • C'est un outil de science citoyenne, qui peut se connecter à l'institut Seti, dans le but de centraliser un grand nombre d'observations effectuées simultanément en différents points de la Planète lors d'évènements transitoires. Il s'agit notamment d'étudier les comètes, astéroïdes et chutes de météorites.
    • Le développement de l'eVscope, assuré par son financement sur Kickstarter, se poursuit. L'instrument devrait être accessible commercialement à 2.000 euros environ d'ici novembre 2018.

    Il y a quelques mois, Futura vous avait présenté le projet d'une start-up française appelée Unistellar. Le but de cette dernière est de démocratiser l'astronomie du ciel profond, ordinairement réservée aux astronomes professionnels et aux amateurs décidés à consacrer de l'argent et du temps pour obtenir les merveilleuses images de galaxies et de nébuleuses qui font rêver.

    À cette occasion, Futura avait réalisé l'interview de l'un des membres d'Unistellar, l'astronome français Franck Marchis, grand spécialiste de Io et des astéroïdes, qui avait prévu qu'un jour, on finirait par découvrir un astéroïde d'origine interstellaire fonçant sur une orbite hyperbolique dans le Système solaire. Il semble que cela soit bien le cas de A/2017 U1 ; les membres de l'équipe Pan-Starrs, qui a découvert cet astéroïde, ont proposé de l'appeler Oumuamua, ce qui signifie « éclaireur et messager » en hawaïen.

    La dernière vidéo de présentation du télescope d'Unistellar. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Unistellar SAS

    1,6 million de dollars pour l'eVscope en quelques semaines sur Kickstarter

    Franck Marchis nous avait donc parlé du nouveau télescope qu'Unistellar avait mis au point et qui demandait encore des financements pour pouvoir être commercialisé. C'est désormais chose faite : une campagne de financement participatif a été lancée il y a quelques semaines sur Kickstarter et elle cartonne. Originairement, il s'agissait de récolter 150.000 dollars avant le 24 novembre 2017 tout en permettant à certains donateurs d'acheter partiellement leur exemplaire de l'instrument, baptisé eVscope (pour Enhanced Vision Telescope), dont la livraison est prévue pour novembre 2018.

    Visiblement, le projet a convaincu. Dans une vidéo de présentation, on voit qu'il a même le soutien de Jill Tarter, figure de proue du programme Seti, bien connue des astrophysiciens pour avoir inventé le terme brown dwarf (« naine brune »), servant à désigner les étoiles de masse insuffisante pour entretenir une fusion d'hydrogène ; cette femme est aussi indirectement célèbre auprès du grand public puisqu'elle a servi d'inspiration au personnage d'Ellie Arroway, dans le célèbre roman Contact, de Carl Sagan, personnage interprété au cinéma par Jodie Foster dans le film éponyme.

    La campagne pour l'eVscope a non seulement atteint son but en quelques jours, mais l'engouement pour le nouveau télescope est tel que son financement a déjà dépassé le million et demi de dollars ! Donc, si vous voulez prendre une option sur l'instrument, courez sur Kickstarter.

    POUR EN SAVOIR PLUS

    L'eVscope (Enhanced Vision Telescope), le télescope révolutionnaire d'Unistellar

    Article de Laurent Sacco publié le 17/08/2017

    Un nouveau télescope développé par la start-up française Unistellar peut mettre l'univers profond à la portée de tout le monde, et même transformer chaque utilisateur en assistant pour l'astronomie professionnelle. Directeur scientifique de cette entreprise et membre de l'institut Seti, partenaire de cette innovation, l'astrophysicien Franck Marchis nous parle de ce télescope révolutionnaire.

    Malheureusement, plusieurs vocations naissantes d'astronomes amateurs se sont brisées face au mur de la réalité. En effet, on ne peut qu'être charmé par les images somptueuses de nébuleuses et de galaxies publiées dans les magazines d'astronomie ou sur Internet. L'envie de les voir de ses propres yeux ou de les photographier est donc bien compréhensible. Sauf que l'astronome en herbe finit souvent par réaliser que s'il est facile de contempler la surface de la Lune, les lunes de Jupiter ou les anneaux de Saturne, il n'en va pas de même pour explorer les objets du ciel profond. Certes, moins d'un millier d'euros peuvent suffire pour acheter des instruments montrant ces objets mais la déception est parfois au rendez-vous. Les images obtenues sont plutôt floues, peu lumineuses et certainement pas colorées.

    L'amateur découvre que du travail et du temps sont nécessaires pour s'offrir de belles observations à l'œil nu. Le pas suivant est la photographie, qui apporte la couleur, grâce au temps de pose, mais l'addition atteint alors quelques milliers d'euros. Il faut multiplier les prises de vue, qui s'étalent sur plusieurs heures, et disposer d'un télescope dont le diamètre du miroir est assez grand pour collecter suffisamment de lumière, au moins 200 mm, et qui soit capable de suivre le mouvement de la voûte céleste. Des filtres colorés ou « antipollution », pour atténuer la dégradation du spectre lumineux en ville, s'imposent souvent et, pour de belles images, mieux vaut déplacer son équipement en campagne loin de l'éclairage urbain. Il faut ensuite se lancer dans le travail du traitement d'images sur ordinateur, une affaire passionnante mais sérieuse. Alors commence le plaisir d'obtenir de superbes images de la nébuleuse planétaire de la Lyre (M57 pour les astronomes amateurs) ou de la galaxie des Chiens de chasse.

    L'eVscope, un télescope capable d'identifier galaxies et nébuleuses

    Une innovation technologique va peut-être démocratiser encore plus l'accès à l'astronomie, à l'ère des technologies exponentielles chères à Peter Diamandis. Elle vient d'une start-up française, Unistellar, qui développe l'eVscope (Enhanced Vision Telescope). Connecté et offrant une vision amplifiée, il a le potentiel de révolutionner l'astronomie amateur.

    Futura a eu l'opportunité d'assister à une démonstration de l'eVscope lors de la manifestation organisée par l'Association française d'astronomie (AFA) sur le Beffroi de Montrouge, le samedi 29 juillet pour la Nuits des Étoiles. Le résultat était bluffant. Même sous un ciel brumeux et dans la pollution lumineuse de la ville, quelques secondes ont suffi pour former une image en couleurs de la nébuleuse planétaire de la Lyre. En dessous de ses capacités dans cet environnement, le télescope offrait une vue déjà impressionnante.

    En effet, l'eVscope combine une technologie qui permet d'accumuler les photons d'une faible source lumineuse, par un temps de pose, comme le fait un appareil photo, et une technique de traitement de l'image en temps presque réel. En une poignée de secondes, l'engin crée une image qui nécessiterait un télescope d'au moins un mètre de diamètre, alors que celui de cet essai disposait d'un modeste miroir de 114 mm. L'image obtenue s'observe à travers un oculaire, comme dans un instrument classique. Mieux, le télescope reconnaît les astres observés, qu'il s'agisse d'étoiles ou de galaxies, et il affiche automatiquement les noms et quelques caractéristiques des objets présents dans le champ.

    Unistellar a mis en ligne des vidéos réalistes qui permettent de se rendre compte des performances de ce télescope encore à l'état de prototype. La start-up veut continuer à le développer en s'appuyant notamment sur une campagne de financement participatif qui sera lancée en automne 2017. L'eVscope sera proposé en prévente entre 1.000-1.500 euros, avec comme objectif les premières livraisons pour mi-2018.

    Les ambitions de ses fondateurs dépassent ce cadre. Depuis quelques mois, un nouveau membre a rejoint l'équipe et il est connu des lecteurs de Futura : c'est Franck Marchis, de l'institut Seti. Nous avons donc demandé à l'astrophysicien de nous parler de l'eVscope et pourquoi Unistellar se trouve désormais associée avec Seti.

    De gauche à droite, trois des membres d'Unistellar : Franck Marchis (directeur scientifique et astronome professionnel à l’institut Seti), Arnaud Malvache (président et directeur technique), Laurent Marfisi (directeur général), avec un prototype de démonstration à Aix-en-Provence en juin 2017. Manque sur cette photo Antonin Borot, l'un des cofondateurs d'Unistellar. © Unistellar

    De gauche à droite, trois des membres d'Unistellar : Franck Marchis (directeur scientifique et astronome professionnel à l’institut Seti), Arnaud Malvache (président et directeur technique), Laurent Marfisi (directeur général), avec un prototype de démonstration à Aix-en-Provence en juin 2017. Manque sur cette photo Antonin Borot, l'un des cofondateurs d'Unistellar. © Unistellar 

    Futura-Sciences : Comment avez-vous été impliqué dans l'aventure Unistellar ?

    Franck Marchis : Par hasard. J'étais présent en janvier 2017 au CES de Las Vegas (Consumers Electronics Show), le plus important salon consacré à l'innovation technologique en électronique grand public, où une démonstration de l'eVscope était donnée. J'ai été emballé par les résultats présentés et par le projet à long terme d'Unistellar. J'ai dédié ma carrière à améliorer la qualité des images des télescopes professionnels avec l'optique adaptative, donc il était évident qu'un jour je ferai de même pour les télescopes destinés au public.

    Unistellar a mis en ligne une démonstration en vidéo de l'eVscope. La formation des images est-elle aussi rapide que celle que l'on y voit ?

    Franck Marchis : Absolument, quelques secondes à quelques dizaines de secondes suffisent pour obtenir une image d'un objet du ciel profond, une nébuleuse planétaire ou une galaxie, en fonction des conditions d'observation. Au bout de quelques minutes, l'instrument atteint son maximum pour la qualité des images. Les couleurs sont réelles, il n'y a pas besoin de travailler sur ordinateur des images prises avec plusieurs filtres et de longues poses imposant un suivi très précis de l'objet sur la voûte céleste.

    Que peut-on vraiment voir avec ce télescope ?

    Franck Marchis : Un de ses objectifs était qu'il soit capable de former une image d'astres aussi faibles que la planète naine Pluton, et c'est le cas. Bien qu'il soit équipé d'un miroir de 11,4 cm, les images obtenues sont équivalentes à celles d'un instrument d'un mètre de diamètre. Lors d'une démonstration, Leo Tramiel, astronome amateur de la Silicon Valley, m'a dit que pour obtenir une image comparable de la nébuleuse du Voile, que nous avons observée à Oakland (une nébuleuse planétaire située dans un nuage chaud et ionisé dans la constellation du Cygne), il lui fallait un télescope avec un miroir de 1 m. Plus précisément, il est possible d'observer des objets dont la magnitude peut atteindre 15,5. Donc, en théorie, les observateurs pourront voir plusieurs centaines d'objets diffus (nébuleuses et galaxies), des étoiles très faibles comme Proxima du Centaure, ainsi qu'un grand nombre d'astéroïdes.

    L'eVscope permet aussi de faire en quelque sorte de la réalité augmentée.

    Franck Marchis : Oui, il peut réaliser ce que l'on appelle une Reconnaissance automatique du champ (RAC). En connaissant sa position sur Terre grâce au GPS, il peut déterminer quels sont les objets célestes dans son champ et afficher directement sur l'image les noms et quelques caractéristiques de ces objets, qu'il s'agisse d'étoiles ou de nébuleuses grâce à une base de données. Le télescope peut aussi suivre ces objets en mouvement sur la voûte céleste sans procédure d'alignement compliquée et sans une coûteuse monture équatoriale.

    De haut en bas, la nébuleuse de l'Haltère, la galaxie du Tourbillon et la nébuleuse de l'Aigle, observées avec le télescope d’Unistellar à l’observatoire des Baronnies Provençales, en France. © Unistellar

    De haut en bas, la nébuleuse de l'Haltère, la galaxie du Tourbillon et la nébuleuse de l'Aigle, observées avec le télescope d’Unistellar à l’observatoire des Baronnies Provençales, en France. © Unistellar 

    Quel est votre rôle dans cette aventure ?

    Franck Marchis : En tant que chercheur à l'institut Seti et directeur scientifique Unistellar, je dois aider à mettre en place le mode « Campagne d'observation » développé pour cet instrument en partenariat avec l'institut. Les astronomes amateurs utilisant l'eVscope pourront se connecter en direct avec l'institut et lui fournir les données collectées pendant leurs observations. On pourra donc avoir une détection précoce et un suivi des phénomènes transitoires, comme l'apparition de supernovae dans des galaxies ou de nouvelles comètes, grâce au fait que les observateurs sont répartis sur toute la surface de la Terre, ce qui contribuera à s'affranchir des contraintes météorologiques locales et des fuseaux horaires. Les astronomes professionnels pourront donc être avertis plus efficacement de l'apparition des phénomènes à l'observation jusque-là réservée à des instruments puissants.

    Les données sur les comètes et les astéroïdes provenant de plusieurs observateurs seront automatiquement combinées, ce qui permettra de former des images de meilleure qualité et de déterminer plus rapidement et plus précisément leurs paramètres orbitaux. Ce qui est bien sûr intéressant pour les géocroiseurs. Il peut aussi être utilisé pour étudier les astéroïdes troyens de Jupiter, les planètes naines de la ceinture de Kuiper, les étoiles variables ou pour rechercher les supernovae dans des galaxies lointaines.

    Nous pensons que nous ne sommes qu'au début de l'exploitation du potentiel de l'eVscope. Son prix et sa facilité d'utilisation et de transport le mettent à la portée de particuliers, d'écoles et de clubs d'astronomie, même dans des pays où les télescopes sont rares. L'accès à l'astronomie serait ainsi possible à un plus grand nombre de personnes sur la planète, y compris pour la science citoyenne. Nous voulons aussi permettre un développement collaboratif en ligne d'applications pour notre télescope, par exemple pour observer et suivre l'ISS. Cela pourrait catalyser la création d'une sorte de Facebook de l'astronomie.

     

    Voyage au cœur de la nébuleuse de la Lyre  Cette vidéo combine des images de la Voie lactée prises dans le cadre du Digitized Sky Survey 2, par Hubble et le Large Binocular Telescope Observatory (LBTO). On y découvre une des nébuleuses les mieux connues et les plus facilement observables. C’est parti pour un voyage en direction de la nébuleuse de la Lyre. 

    Lire la suite

  • Astronomie en générale/Les géocroiseurs, des astéroïdes dangereux

    Les astéroïdes peuvent nous fournir de formidables renseignements sur la naissance du Système solaire. Certains, les géocroiseurs, représentent toutefois une menace pour la Terre. Découvrez tout de ces objets aussi précieux qu’inquiétants dans ce dossier.

    Les astéroïdes sont-ils une menace pour la Terre ? Depuis une trentaine d'années seulement, nous commençons à prendre conscience de la possibilité d'une collision d'un astéroïde avec notre planète.

    D'après Steven Ostro (chercheur à la Nasa), il y aurait 2.000 astéroïdes dont la taille dépasserait 1 kilomètre, quelques centaines de milliers les 100 mètres et peut-être 150 millions les 10 mètres.

    Le célèbre Meteor Crater d'Arizona (1 kilomètre de diamètre) est le résultat de l'impact d'une météorite d'à peine 15 mètres de diamètre. © Steve Jurvetson, CC by-nc 2.0

    Le célèbre Meteor Crater d'Arizona (1 kilomètre de diamètre) est le résultat de l'impact d'une météorite d'à peine 15 mètres de diamètre. © Steve Jurvetson, CC by-nc 2.0 

    Au début des années 1970, seulement 13 astéroïdes géocroiseurs ont été repérés : ce qui laissait entrevoir un risque de collision peu élevé. C'est à cette époque qu'on a réalisé le danger présenté par les géocroiseurs. En effet, les missions Apollo ont montré que la multitude des cratères lunaires était due à l'impact d'astéroïdes. Si la Lune a subi un bombardement intense, la Terre en a sûrement été elle aussi victime.

    La fréquence des collisions des astéroïdes sur Terre. © idé

    La fréquence des collisions des astéroïdes sur Terre. © idé 

    Les impacts d'astéroïdes : le Meteor Crater et le cratère de Chicxulub 

    Cependant, on retrouve peu de traces d'impacts sur la Terre parce qu'elle est constamment remodelée par l'érosion, l'activité tectonique et le volcanisme. Le célèbre Meteor Crater d'Arizona (1 kilomètre de diamètre, voir la photo ci-dessus) est le résultat de l'impact d'une météorite d'à peine 15 mètres de diamètre. De plus, le choc d'un astéroïde de 30 mètres de diamètre dégage une énergie équivalente à celle de la bombe Hiroshima. Suivant la taille de l'objet, les conséquences peuvent donc être cataclysmiques.

    Il y a environ 65 millions d’années, près de la péninsule du Yucatán, au Mexique, une météorite de plus de 10 km de diamètre s’écrasa sur Terre formant le cratère de Chicxulub. Le choc, équivalent à environ un million de bombes atomiques, serait en partie responsable de l’extinction des dinosaures. Discovery Science revient sur cet évènement en vidéo. © Discovery Science

    Pour Michel Grenon, astrophysicien à l'observatoire de Sauverny, la chute d'un astéroïde de quelques kilomètres provoquerait des séismes majeurs, des éruptions volcaniques, des raz de marée monstrueux ainsi que des nuages de poussière masquant les radiations solaires et provoquant ainsi l'équivalent d'un hiver nucléaire.Par exemple, le cratère de Chicxulub (180 kilomètres de diamètre), au large du Yucatan, au Mexique, a été causé par la chute d'un astéroïde de taille moyenne : 9 à 10 kilomètres de diamètre. Sa vitesse a été estimée entre 30 et 50 kilomètres par seconde. Il a créé une vague qui est remontée sur 2.000 kilomètres à l'intérieur des terres, dans la plaine du Mississippi (il y a 65 millions d'années) et a en partie causé l'extinction des dinosaures…

    Astéroïdes : comment prévenir la catastrophe ?

    La vitesse des astéroïdes étant considérable, la détection et le calcul de leur trajectoire en est rendu plus difficile. De bons télescopes permettent, avec un temps de pose de l'ordre de 20 minutes, de prendre une photo d'une portion de ciel. On y voit des petits points, représentant des objets immobiles, et des sortes de traînées souvent assimilées à des astéroïdes. On calcule ensuite leur orbite, par extrapolation. Évidemment, plus ils sont gros et proches, mieux on les détecte. Un astéroïde non identifié au préalable et qui viendrait du centre du Système solaire serait impossible à repérer visuellement.

    La mission Aida est destinée à tester la déviation d'un astéroïde avec un impacteur, un petit engin propulsé à grande vitesse et venant s’écraser à la surface de l’astre. L’Esa (Agence spatiale européenne) nous en dit plus au cours de cette vidéo de présentation du projet. © Esa

    En 25 ans d'observations, on a identifié quelque 250 astéroïdes géocroiseurs. Les astronomes estiment qu'on a repéré à peine 10 % des plus gros d'entre eux. Afin de quantifier plus précisément le risque de collision avec la Terre, un programme de surveillance du ciel a été mis en place, Spaceguard Survey, utilisant un réseau de télescopes de 2 à 3 mètres de diamètre. L'objectif recherché est de découvrir 90 % de l'entière population des astéroïdes géocroiseurs, ou Earth-Crossing Asteroids (ECA) en anglais, de taille kilométrique. Nous serions à même de prévoir l'évolution orbital de ces objets et de prévenir tout danger de collision avec des moyens qui restent à définir (voir vidéo ci-dessus).

    Dessin d'une collision entre un astéroïde et la Terre. © Don Davis, Nasa, DP

    Dessin d'une collision entre un astéroïde et la Terre. © Don Davis, Nasa, DP 

    Les grands cataclysmes sont particulièrement rares. Ils ne surviennent pas plus d'une fois tous les 100 millions d'années. Quant à une catastrophe de moindre envergure, nous avons des chances d'y échapper puisque la présence humaine ne s'étend que sur 3 % de la surface de la Terre.

    LeBarringer Meteor Craterprès de Winslow, en Arizona, estun des exemples les mieux conservés de cratères d'impact sur Terre. © D. Roddy, Wikimedia Commons, DP

    LeBarringer Meteor Craterprès de Winslow, en Arizona, estun des exemples les mieux conservés de cratères d'impact sur Terre. © D. Roddy, Wikimedia Commons, DP 

    Enfin, l'histoire nous montre clairement que nous avons beaucoup à apprendre sur les astéroïdes. À ce sujet, en février 1996, la Nasa a lancé la sonde Near Shoemaker(Near pourNear-Earth Asteroïd Rendezvous) qui se plaça en orbite autour de l'astéroïde 433 Éros en février 2000 et qui finit sa mission en février 2001.

  • Astronomie en générale/Astronomie Le Catalogue Messier et NGC

    L  ASTRONOMIE EN GENERAL

    15943066 10209985835994004 485642320 o

    Lire la suite

  • Astronomie en générale/ NASA TV EN LIVE

    Retrouvez nous sur notre page Facebook ➡️ 

     

    https://www.facebook.com/associationastrometeofrancosuisse30/

    Lire la suite

×