Billets de dimitri1977

  • LE 8.12.2019: Actualité de la météo,de l'astronomie et de la science/l’âge de notre Galaxie déterminé grâce à des tremblements d’étoiles.

    l’âge de notre Galaxie déterminé grâce à des tremblements d’étoiles.

    Journaliste

    CONTENUS SPONSORISÉS

    Les données recueillies par le télescope spatial Kepler étaient initialement destinées à traquer les exoplanètes. Des astronomes s'en sont servis pour étudier des tremblements d'étoiles et donner une nouvelle estimation de l'âge de notre Voie lactée. Celle-ci aurait environ 10 milliards d'années.

    Vous aimez nos Actualités ?

    Inscrivez-vous à la lettre d'information La quotidienne pour recevoir nos toutes dernières Actualités une fois par jour.

    Notre Voie lactée est une galaxie spirale semblable à beaucoup d'autres. Elle est ainsi constituée de deux structures en forme de disque : un disque mince qui s'étend sur quelque 1.100 années-lumière et un disque épais, bien plus grand - il pourrait dépasser les 15.000 années-lumière - et composé des étoiles les plus âgées de notre Galaxie.

    C'est donc naturellement à ce disque épais que les chercheurs s'intéressent lorsqu'ils cherchent à déterminer l’âge de notre Voie lactée. Mais jusqu'à présent, les résultats obtenus grâce aux données astronomiques et ceux prédits par les modèles divergeaient. Alors une équipe de l'ARC Centre of Excellence for All Sky Astrophysics in Three Dimensions (Australie) s'est tournée vers l'astrosismologie.

    « Les tremblements d’étoiles sont à l'origine d'ondes sonores qui font vibrer les étoiles », explique Dennis Stello, coauteur de l’étude. À des fréquences qui fournissent aux astronomes, des indices sur la structure interne de ces étoiles. Et sur leur âge. « Un peu comme si vous identifiez un Stradivarius en écoutant la musique qu'il joue », poursuit le chercheur.

    Une vue d’artiste de notre Voie lactée représentant notamment le disque épais – thick disk – et le disque mince – thin disk. © Nasa, JPL Caltech, R.Hurt, SSC

    Une vue d’artiste de notre Voie lactée représentant notamment le disque épais – thick disk – et le disque mince – thin disk. © Nasa, JPL Caltech, R.Hurt, SSC 

    En attendant des données plus précises

    Mais attention, il ne suffit pas aux astronomes de tendre l'oreille pour écouter la musique des étoiles. Ce qu'ils parviennent à détecter, ce sont les variations de luminosité d’une étoile en fonction des mouvements internes qui la secouent. Des variations très fines qui ne sont pas si simples à détecter.

    Détecter le passage d’une puce dans un phare de voiture

    C'est donc finalement grâce à la précision du défunt télescope spatial Kepler - destiné initialement à détecter des exoplanètes - que les chercheurs australiens ont obtenu le résultat tant espéré. « Kepler était tellement sensible qu'il aurait été capable de détecter le changement de luminosité d'un phare de voiture traversé par une puce », ironisent les astronomes.

    Les premières données fournies par Kepler suggéraient la présence dans le disque épais de plus d'étoiles jeunes que prévu par les modèles. Mais des données plus récentes ont contraint les chercheurs à revoir la composition chimique desdites étoiles. Et leur ont enfin permis de réconcilier observations et modèles. Selon eux, le disque épais de notre Voie lactée aurait quelque 10 milliards d'années. Ils espèrent maintenant que de nouvelles données transmises par le satellite Tess - pour Transiting Exoplanet Survey Satellite - leur apporteront encore un peu plus de précision et leur permettront de mieux comprendre le processus de formation de notre Galaxie.

    CE QU'IL FAUT RETENIR

    • Le disque épais de notre Voie lactée est réputé renfermer les étoiles les plus anciennes.
    • Grâce aux données du télescope spatial Kepler, les astronomes ont étudié les tremblements d’étoiles qui se produisent dans ce disque épais.
    • Ils ont en conclu que celui-ci devait avoir environ 10 milliards d’années.

    Source: https://www.futura-sciences.com/
    Lien: https://www.futura-sciences.com/sciences/actualites/voie-lactee-voie-lactee-age-notre-galaxie-determine-grace-tremblements-etoiles-78697/?utm_content=buffer38c06&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer&fbclid=IwAR1gZioqSBlZWl0ZlkVlzfz19AGw5v4b5JVkusIpHimCTBkj8f0xQn4B6p0#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

     

  • LE 8.12.2019: Actualité de la météo,de l'astronomie et de la science/ Une image à couper le souffle de Jupiter.

    Une image à couper le souffle de Jupiter.

    Lire la bio

    Journaliste

    Encore une vue à couper le souffle de la gigantesque Jupiter. L'image a été prise par la sonde spatiale Juno lors de son dernier passage au plus près de la planète, le 3 novembre dernier. L'engin de la Nasa chargé de percer les secrets de la géante gazeuse était alors à 104.600 kilomètres de la haute atmosphère.

    Sur cette image traitée par Ali Abbasi, un fervent scientifique-citoyen, on distingue dans la partie éclairée plusieurs cyclones qui dansent autour du pôle sud de Jupiter.

    La Nasa indique que Juno voguait à quelque 137.000 km/h quand cette photo a été prise. Une heure plus tôt, au moment où la sonde passait au plus près de la géante gazeuse, sa vitesse dépassait les 209.000 km/h.

    VOIR AUSSILa Grande Tache rouge de Jupiter ne va pas disparaître

    Jupiter lors du survol de la sonde Juno du 3 novembre 2019. © Nasa, JPL-Caltech, SwRI, MSSS, Ali Abbasi

    Jupiter lors du survol de la sonde Juno du 3 novembre 2019. © Nasa, JPL-Caltech, SwRI, MSSS, Ali Abbasi.

    Source: https://www.futura-sciences.com/
    Lien: https://www.futura-sciences.com/sciences/breves/jupiter-image-couper-souffle-jupiter-1636/?utm_content=buffer48ee6&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer&fbclid=IwAR2Cpxh5b8GCYzP8g66zK_FZcKQRKbh6PacTBeRDXlcIYfSwLC8KtDSJBwI#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura

     

  • LE 24.11.2019: Actualité de la météo,de l'astronomie et de la science/ 21.443 astéroïdes menacent la Terre !

    21.443 astéroïdes menacent la Terre !

    Journaliste

    CONTENUS SPONSORISÉS

    Les 26 et 27 novembre prochains, les ministres responsables des affaires spatiales des 22 États membres de l'Agence spatiale européenne se réuniront à Séville, en Espagne. Ensemble, ils décideront du niveau de ressources et de la répartition du budget dédiés aux activités et programmes spatiaux de l'ESA pour les années à venir. En attente d'un feu vert, citons la mission Hera de défense planétaire dont l'objectif est de participer à un test de déviation avec la Nasa dans le cadre de la mission Dart.

    Vous aimez nos Actualités ?

    Inscrivez-vous à la lettre d'information La quotidienne pour recevoir nos toutes dernières Actualités une fois par jour.

    Hera est un petit satellite qui doit mesurer le « résultat de l'impact de la mission Dart de la NASA avec une grande précision afin de produire les connaissances les plus précises possibles dès la première démonstration d'une technologie de déflexion d'astéroïdes », explique Patrick Michel, directeur de recherche au CNRS à l'Observatoire de la Côte d'Azur, lequel a la responsabilité scientifique de la mission.

    La décision de lancer la construction de ce petit satellite sera prise lors de la session du Conseil au niveau ministériel de l'ESA qui se réunira les 26 et 27 novembre prochains à Séville, en Espagne. En attendant cette date, plus de 1.000 experts et scientifiques -- dont les responsables des missions Osiris-Rex et Hayabusa2 -- ont signé une lettre de soutien à la mission Hera, car les implications de cette dernière vont bien au-delà de ce test de déviation. En effet, Hera, qui fournira une expérience d'impact documentée à l'échelle d'un astéroïde, s'inscrit dans un contexte plus large de stratégies de défense pour protéger la Terre des impacts d'objets proches de la Terre (NEO).

    Le saviez-vous ?

    Pour comprendre la nécessité d’acquérir la capacité de changer la trajectoire d’un astéroïde, avant qu’il soit identifié comme se trouvant sur une ligne de collision avec la Terre, il faut savoir qu’au 5 novembre 2019, ont été répertoriés 21.443 astéroïdes proches de la Terre et dont l’orbite coupe celle de la Terre ou l’amène à faible distance. Si, statistiquement, le risque de collision à l’échelle humaine est proche du zéro, dans son passé, la Terre a été percutée à plusieurs reprises et il ne fait aucun doute que cela se reproduira dans le futur.

    Pour comprendre l'intérêt d'Hera et la nécessaire réussite de la mission Dart, il faut savoir que des objets géocroiseurs, d'un diamètre égal ou supérieur à 100 m, peuvent un jour « frapper la surface de la Terre ou exploser en boule de feu à basse altitude, causant dans les deux cas des dommages importants sur des régions de plusieurs milliers de kilomètres carrés ou plus », expliquent les scientifiques qui supportent la mission Hera. Contrairement aux autres catastrophes naturelles, l'impact d'un astéroïde sur la Terre est « non seulement celui que nous savons prédire, mais nous pouvons également le prévenir par des moyens qu'il suffit de tester », tiennent-ils à préciser. Et de conclure : « Nous sommes aujourd'hui la première génération d'êtres humains à disposer de la technologie nécessaire pour tenter de modifier la trajectoire d'un astéroïde. » À cet égard, il est crucial de déterminer si un « impacteur cinétique est capable de dévier un astéroïde, comme le prédisent nos modèles de simulation, avant que la Terre ne soit menacée, » précise Ian Carnelli, responsable de la mission Hera. C'est ce que Hera aidera à évaluer, conjointement avec la mission Dart de la Nasa. D'où son intérêt.

    Le timeline de la mission Hera. © ESA

    Le timeline de la mission Hera. © ESA 

    À cela, s'ajoute que la défense planétaire doit se faire dans un cadre international : la Nasa a confirmé Dart, de sorte qu'il faut que Hera parte, d'autant plus que c'est l'ESA et l'Europe qui ont été les initiatrices du projet, en commençant par l'étude de Don Quijotte il y a 15 ans. Les Américains ont rejoint le projet bien plus tard, en 2011. « On ne peut pas avoir initié tout cela, avoir travaillé 15 ans avec les industriels, les experts des petits corps et les étudiants pour, finalement, être seulement témoins des actions américaines », tient à préciser Patrick Michel.

    Hera, indissociable de Dart

    Surtout, les résultats de Dart ne permettront pas de valider complètement la technique de déviation par impact, car « il manquera des mesures que seule Hera peut faire ». « L'Europe a acquis toute l'expertise nécessaire et est fin prête », rappelle Ian Carnelli. De plus, « Hera fait partie de ce type de missions qui sont sources d'inspiration pour les jeunes, car ce sont de véritables aventures ! », dit Patrick Michel.

    Il faut également préciser qu'Hera n'est pas seulement une mission centrée sur la défense planétaire. Le retour scientifique sera énorme car ce sera le « premier rendez-vous avec un binaire, le plus petit astéroïde jamais visité (la lune de Didymos a un diamètre de 165 m), la première mesure de structure interne avec technique radar dont la France a l'expertise et la première mesure précise du résultat d'un impact dans une gamme de vitesses d'impact correspondant à celle entre astéroïde », nous explique Patrick Michel.

    Les résultats d'Hera compléteront également ceux de la mission Hayabusa2 et notamment les résultats de l'expérience d’impact d’Hayabusa2 qui ont surpris les scientifiques. En effet, avec une énergie bien plus faible que celle de Dart, la taille du cratère créée par la sonde « n'était pas celle qu'on attendait, et il est donc important d'augmenter notre compréhension du phénomène sur un corps de 165 m de diamètre et à un niveau plus élevé d'énergie, pour plein de raisons ». Les « scientifique ne sont pas capables de prédire la taille des cratères artificiels ni la dynamique des éjectas » ajoute Ian Carnelli, les conditions sine qua non pour acquérir les outils et techniques de déviation nécessaires pour nous protéger d'un astéroïde filant droit sur nous.

    CE QU'IL FAUT RETENIR

    • La Nasa et l'ESA souhaitent savoir si l'impact cinétique est une bonne technique pour dévier la trajectoire d'un astéroïde fonçant sur la Terre.
    • L'astéroïde binaire Didymos a été choisi pour cette expérience inédite.
    • La mission Dart de la Nasa percutera la lune Didymoon tandis que la sonde de l'ESA, Hera, mesurera les effets et les différents paramètres de cet impact. 

    POUR EN SAVOIR PLUS

    Astéroïdes : la mission Hera pour défendre la Terre

    Article de Rémy Decourt publié le 09/07/2018

    Pour protéger la Terre d'une collision annoncée avec un astéroïde, peut-être faudra-t-il dévier celui-ci. Pour tester cette idée, la Nasa a prévu de lancer la mission Dart à destination de l'astéroïde binaire Didymos. Quelques années plus tard, l'Agence spatiale européenne (ESA) enverra la mission Hera, notamment pour mesurer les effets de l'impact.

    Face au risque, très faible mais statistiquement pas nul, qu'un astéroïde de taille importante frappe la Terre, les agences spatiales étudient les moyens possibles pour protéger la Planète. La déviation de l'objet serait la solution la plus pragmatique. Pour tester cette idée, la Nasa a prévu de lancer la mission d'impact et de déviation Dart à destination de l'astéroïde binaire Didymos. Ce dernier est composé de deux objets : Didymos, le corps principal de 780 m de diamètre, et une lune de 160 m, provisoirement baptisée Didymoon, qui tourne autour de Didymos. La mission Dart percutera la lune Didymoon.

    Dart est une étape importante pour démontrer qu'il est possible de protéger la Terre d'un astéroïde grâce à la technique de l'impact cinétique, c'est-à-dire en faisant dévier de sa trajectoire l'objet percuté. La maîtrise de cette technologie est l'une des deux armes envisagées par la Nasa pour défendre notre Planète contre un objet dangereux de grande taille (l'autre solution est l'explosion nucléaire à proximité).

    Initialement, l'Agence spatiale européenne (ESA) devait participer à la mission Dart en fournissant le satellite AIM de surveillance de l'impact ainsi qu'en réalisant l'observation du cratère formé et celle de ses éjecta. Mais, faute de budget, cette mission a été annulée en décembre 2016. Pour s'affranchir de cette contrainte, l'équipe du projet AIM vient de présenter Hera. Cette nouvelle proposition de mission est moins ambitieuse, avec des objectifs limités à l'observation des conséquences de l'impact et du calcul des changements de l'orbite de Didymoon. Alors que le satellite AIM devait suivre en direct l'impact, Hera arrivera sur le site deux ans après l'impact de Dart.

    La caractérisation de l'impact de Dart et la mesure de l'orbite de Didymoon sont les principaux objectifs de la sonde Hera, de l'Agence spatiale européenne (ESA). © ESA, Science Office

    La caractérisation de l'impact de Dart et la mesure de l'orbite de Didymoon sont les principaux objectifs de la sonde Hera, de l'Agence spatiale européenne (ESA). © ESA, Science Office 

    Déterminer les capacités de l'impact cinétique

    Hera sera proposée aux États membres de l'ESA lors de la prochaine conférence ministérielle prévue en 2019 ; ceux-ci devraient l'approuver. Même si elle ne suivra pas l'impact de Dart contre Didymoon, Hera a son importance pour mesurer le succès de l'opération. L'impact entraînera un changement dans la durée de l'orbite de Didymoon autour du corps principal. Sans Hera, les scientifiques seraient contraints de réaliser les mesures nécessaires à cette caractérisation de l'impact depuis la Terre, qui, à ce moment-là, sera située à plus de 11 millions de kilomètres. Or, une mesure très précise est requise pour les modèles d'impact cinétique : en raison des distances en jeu, un changement d'orbite de quelques millimètres peut faire la différence entre une planète percutée ou seulement survolée à bonne distance par un astéroïde.

    Hera, qui sera située à quelques dizaines de kilomètres de l'astéroïde, réalisera des mesures de Didymoon bien plus précises et fines que les observatoires terrestres. Cette mission permettra également de caractériser le cratère formé par l'impact de Dart avec une résolution de seulement 10 centimètres, donnant un aperçu des caractéristiques de surface et de la composition interne de l'astéroïde.

    VOIR AUSSIUn CubeSat va partir à l'assaut d'un astéroïde : une première

    Hera sera la première mission à destination d'un astéroïde binaire. Bien que ces objets binaires représentent 15 % de tous les astéroïdes connus, ils n'ont jamais été explorés auparavant. Quant à Didymoon, ce sera l'astéroïde le plus petit jamais étudié par une sonde. La sonde de l'ESA transportera également deux CubeSats pour recueillir des données scientifiques supplémentaires et tester des liaisons satellites entre eux.

    Dart sera lancée en décembre 2020 et devrait entrer en collision avec Didymoon en octobre 2022. Quatre ans plus tard (en 2026), Hera atteindra Didymos et Didymoon ; ce dernier sera alors devenu le premier objet du Système solaire à avoir eu son orbite modifiée par la main de l'Homme !

     

    Source: https://www.futura-sciences.com/
    Lien: https://www.futura-sciences.com/sciences/actualites/asteroides-21443-asteroides-menacent-terre-71904/?utm_content=buffereb50d&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer&fbclid=IwAR0o_a0YXRUuoqywNPyp6AnVoOUAuANejN-pk1MtZAGHQhUcoZbiReMrKAI#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura​

  • LE 24.11.2019: Actualité de la météo,de l'astronomie et de la science/de la vapeur d'eau jaillit d'Europe, une lune potentiellement habitable.

    C'est confirmé : de la vapeur d'eau jaillit d'Europe, une lune potentiellement habitable.

    Journaliste

    CONTENUS SPONSORISÉS

    Pour la première fois, de l'eau à l'état de vapeur a été détectée autour d'Europe, la lune glacée de Jupiter avec un océan global recouvert d'une banquise. Cette vapeur ne semble pouvoir exister qu'en raison de la présence de geysers.

    Vous aimez nos Actualités ?

    Inscrivez-vous à la lettre d'information La quotidienne pour recevoir nos toutes dernières Actualités une fois par jour.

    Il y a 410 ans, en mars 1610, Galilée réalisa que les points lumineux en mouvement qu'il avait découverts autour de Jupiter, quelques mois auparavant avec sa lunette astronomique, devaient être les équivalents de notre Lune pour la Terre. Ces mondes, couramment appelés des lunes galiléennes, avaient été découverts indépendamment, au même moment, par l'astronome allemand Simon Marius. Il leur a donné leurs noms actuels, dérivés des amantes de Zeus, à la suggestion de Johannes Kepler. Il s'agit donc de Io, Europe, Ganymède et Callisto dans l'ordre de la distance croissante à Jupiter.

    Io fascine par ses éruptions volcaniques mais pour Europe, c'est sa banquise qui a été observée de près pour la première fois il y a 40 ans, le 9 juillet 1979, par la sonde Voyager 2. Depuis lors, les observations s'accumulent à son sujet et les spéculations aussi en ce qui concerne l'existence de formes de vie dans un océan d'eau liquide sous cette banquise. On peut penser en effet que, tout comme dans le cas d'Io, les forces de marée de Jupiter et des autres lunes galiléennes y provoquent des dégagements de chaleur à l'origine d'un volcanisme important. Au fond de l'océan global d'Europe, il pourrait donc y avoir des sources chaudes hydrothermales similaires à celles que l'on connaît sur Terre avec des oasis de vie. D'ailleurs, la vie sur la Planète bleue a peut-être fait son apparition dans de telles sources.

    Depuis quelques années, comme le montrent les précédents articles de Futura sur Europe, que l'on peut lire ci-dessous, on a de plus en plus de raisons de penser que des geysers sont occasionnellement en activité sur Europe. Aujourd'hui, une équipe internationale d'astronomes vient de publier dans le journal Nature Astronomy un article qui semble confirmer indirectement leur existence puisqu'il s'agit de la première mesure directe de présence de vapeur d'eau autour d'Europe.

    Des geysers à la portée d'Europa Clipper

    La glace de la banquise de la lune de Jupiter ne devrait pas se sublimer dans les conditions de pression et de température où elle existe. Nous avons aussi des arguments pour dire que les molécules d'eau détectées ne sont pas le produit de l'intense bombardement de radiation à la surface d'Europe. La vapeur d'eau ne devrait donc pouvoir venir que de geysers.

    On peut bien sûr être étonné d'une détection aussi tardive de molécules aussi ordinaires que H2O à l'état de vapeur autour d'Europe. En fait, déjà en 2013, le télescope spatial Hubble avait permis de détecter les éléments chimiques hydrogène (H) et oxygène (O) dans des configurations semblables à des panaches s'élevant d'Europe. Mais il a fallu attendre les observations faites dans le domaine infrarouge depuis le sol à Hawaï pour obtenir la preuve de l'existence de molécules d'eau.

    Elles ont été faites à l'aide du Near-Infrared Spectrograph (NIRSPEC) équipant le fameux Observatoire W. M. Keck situé à une altitude de 4.145 mètres sur le mont Mauna Kea de l'île d'Hawaï. Mais la preuve elle-même a nécessité un savant traitement des données pour filtrer des effets parasites dus à l'atmosphère terrestre et mettre en évidence les raies spectrales de la molécule H2O. Ces raies n'ont été détectées qu'au cours d'une seule des 17 campagnes d'observations menées entre 2016 et 2017. À ce moment-là, il semble qu'Europe ait éjecté 2.360 kilogrammes d'eau par seconde, de quoi remplir une piscine de taille olympique en quelques minutes.

    On attend donc avec impatience le lancement au cours des années 2020 de la mission Europa Clipper qui devrait réaliser une quarantaine de survols d'Europe, à des distances variant entre 2.700 et 25 kilomètres de sa surface. La sonde est équipée d'instruments qui lui permettront d'analyser la composition des panaches de vapeur d'eau d'Europe, en quête de trace indirecte de la Vie. Une mission encore plus ambitieuse est envisagée conjointement par la Nasa et l’ESA, avec un atterrisseur qui, lui, pourrait partir dans le courant de la décennie 2030.

    CE QU'IL FAUT RETENIR

    • Europe, une lune glacée de Jupiter, contient un océan d'eau liquide sous sa banquise où des formes de vie analogues à celles découvertes autour des sources hydrothermales sur Terre existent peut-être.
    • Des signes de ces formes de vie pourraient être détectables par les instruments de la mission Europa Clipper qui devrait être lancée au cours des années 2020.
    • Hubble aurait détecté des geysers s'élevant d'Europe. Des observations en infrarouge menées au sol avec les instruments de l'Observatoire W. M. Keck vont dans le sens de l'existence de ces geysers en mettant en évidence pour la première fois de la vapeur d'eau autour d'Europe.
    • Europa Clipper pourrait être utilisée pour traverser ces geysers dans un futur proche.

    POUR EN SAVOIR PLUS

    Geysers d'Europe : repérés il y a vingt ans par Galileo mais découverts aujourd'hui...

    Article de Laurent Sacco publié le 22/05/2018

    Les archives des données collectées par la sonde Galileo lors d'un de ses survols d'Europe, la plus grosse lune de Jupiter, contenaient un trésor caché. Analysées à l'aide de simulations numériques modernes, ces données confirment la présence de geysers il y a presque vingt ans, dans la région où Hubble les avait ensuite suspectés en 2012.

    La vie existe-t-elle ailleurs que sur Terre dans l'Univers ? C'est une des rares questions philosophiques et scientifiques profondes à laquelle l'humanité a de bonnes chances de pouvoir répondre au cours du XXIe siècle. On a d'abord pensé que la réponse viendrait de l'exploration de Mars mais il semble désormais plus probable qu'elle viendra de l'étude des lunes glacées possédant un océan sous une banquise dans le Système solaire. L'exobiologie devrait donc peut-être définitivement acquérir ses lettres de noblesse via l'exploration d'Europe autour de Jupiter et d'Encelade autour de Saturne.

    Pour différentes raisons physico-chimiques, l'eau liquide semble indispensable pour l'apparition et le développement de la vie et il existe visiblement de sources d'énergie à l'intérieur d'Europe et de Jupiter qui maintiennent liquide l'eau de cette lune. Elles pourraient servir également à des organismes vivant grâce à l'énergie, non pas de la photosynthèse mais d'une chimiosynthèse comparable à celle exploitée sur Terre dans les abysses autour des sources hydrothermales.

    Europa Clipper cherchera des signatures de la vie dans l'océan d'Europe

    On pourrait croire que ces formes de vie soient à tout jamais hors de portée de la curiosité d'Homo sapiens, protégées de ses investigations par des kilomètres de banquise, mais la Nature n'est peut-être pas si cruelle car des geysers existent sur Encelade et très probablement aussi sur Europe. Les panaches d'eau crachés pourraient contenir des micro-organismes ou pour le moins des biosignatures que des sondes pourraient détecter en les traversant.

    À cet égard, les espoirs sont sans doute grandissants pour les planétologues et les exobiologistes depuis que des indications de plus en plus convaincantes de l'existence de geysers sur Europe. Elles sont d'abord venues des observations du télescope Hubble en 2012 mais elles sortent aujourd'hui de nouvelles analyses de données recueillies par la sonde Galileo lors d'un survol rapproché d'Europe réalisée en 1997. C'est ce que vient de révéler une équipe de chercheurs états-uniens menée par Xianzhe Jia, de l'université du Michigan à Ann Arbor, dans un article de Nature Astronomy.

    Or, la nouvelle est aujourd'hui précieuse car la Nasa prépare une mission spécialement dédiée à la lune glacée de Jupiter : Europa Clipper (voir la vidéo ci-dessus).

    Illustration de l'artiste de Jupiter et Europa (au premier plan) avec le vaisseau spatial Galileo après son passage à travers un panache émergeant de la surface de l'Europe. Une nouvelle simulation informatique donne une idée de la façon dont le champ magnétique interagit avec un panache. Les lignes de champ magnétique (en bleu) montrent comment le panache interagit avec le flux ambiant du plasma jovien. Les couleurs rouges sur les lignes montrent des zones de plasma plus denses. © Nasa, JPL-Caltech, Univ. of Michigan

    Illustration de l'artiste de Jupiter et Europa (au premier plan) avec le vaisseau spatial Galileo après son passage à travers un panache émergeant de la surface de l'Europe. Une nouvelle simulation informatique donne une idée de la façon dont le champ magnétique interagit avec un panache. Les lignes de champ magnétique (en bleu) montrent comment le panache interagit avec le flux ambiant du plasma jovien. Les couleurs rouges sur les lignes montrent des zones de plasma plus denses. © Nasa, JPL-Caltech, Univ. of Michigan 

    Des geysers trahis par le champ magnétique mesuré par la sonde Galileo

    Xianzhe Jia, un spécialiste des plasmas et des champs magnétiques du Système solaire et membre de l'équipe chargée des instruments d'Europa Clipper, avait été intrigué par une présentation des observations d'Europe par le télescope Hubble, donnée par l'astronome Melissa McGrath de l'institut Seti, également membre de la mission Europa Clipper. La chercheuse avait mentionné que la sonde Galileo était passée à environ 200 km au-dessus de la région d'où semblaient s'élever des panaches.

    Jia et ses collègues ont cherché si la sonde n'avait pas détecté quelque chose de particulier dans le champ magnétique d'Europe à ce moment-là. Leur idée était de trouver dans les données archivées un signal analogue à celui détecté par la sonde Cassini lorsqu'elle est passée tout près des geysers d’Encelade (qu'elle a traversés ensuite). Un tel panache modifie en effet le champ à cause de l'ionisation d'une partie de ses atomes. Bonne pioche : ce fut le cas. Il restait cependant à démontrer, de façon convaincante et solide, que ce signal s'explique bien par la présence de geysers.

    Les chercheurs ont alors pu réussi ce que leurs collègues des années 1990 ne pouvaient pas faire, limités qu'ils étaient par la technologie de l'époque : produire une simulation numérique en 3D suffisamment fidèle des interactions d'un plasma avec les corps du Système solaire. Ici, en l'occurrence, les modifications de la magnétosphère d'Europe causées par l'émission de geysers. Alimentée par les données de Hubble sur la dimension des panaches de ces geysers supposés, la simulation a effectivement montré des ondes dans le plasma autour d'Europe, produisant exactement les modifications du champ magnétique observées par Galileo.

    Voilà de quoi motiver une préparation encore plus fine de la mission Europa Clipper dans le but de détecter des biosignatures lors d'un des 40 à 45 survols prévus, en particulier à travers des panaches.


    La Nasa aurait détecté des geysers sur Europe, cette lune de Jupite

    Article de Laurent Sacco publié le 27/09/2016

    La Nasa a présenté une conférence de presse ce lundi 26 septembre 2016 avec d'étonnantes images d'Europe, la lune glacée de Jupiter, prises par Hubble. Comme on s'en doutait, ces images sont compatibles avec l'hypothèse d'une reprise de l'activité de geysers déjà probablement observés par le télescope en 2012. Ces panaches ramènent peut-être en surface des formes de vies qui pourraient exister dans l'océan d'Europe.

    Comme l'explique la vidéo ci-dessous mise en ligne par la Nasa, en 2012, des astrophysiciens avaient découvert de façon indirecte ce qui semblait bien être des geysers au-dessus du pôle sud d'Europe, la lune glacée de Jupiter. En utilisant une technique similaire à celle mise en œuvre pour détecter et analyser les atmosphères des exoplanètes avec le télescope Hubble, une nouvelle équipe de chercheurs pense avoir elle-aussi obtenu des indications en faveur de l'existence de ces geysers.

    En effet, à l'occasion d'un transit devant Jupiter, ils ont cherché à mettre en évidence une atmosphère autour d'Europe en mesurant et caractérisant une possible absorption de la lumière ultraviolette réfléchie par Jupiter, car passant à travers cette atmosphère si elle était bien présente. Des panaches transitoires semblent bel et bien avoir été détectés à trois reprises sur une période de 15 mois (à l'occasion de 10 campagnes d'observations), s'élevant à des hauteurs comparables à celles mesurées en 2012 et surtout en provenance des mêmes régions sur la surface d'Europe. Les quantités de matière éjectées sont aussi remarquablement similaires. Deux techniques différentes ont donc conduit aux mêmes conclusions, ce qui est très encourageant.

    Une vue d'artiste du cryovolcanisme sur Europe avec une banquise épaisse de quelques kilomètres. La croûte superficielle de la banquise a subie le bombardement des rayons cosmiques ce qui a fait changer sa couleur. En arrière plan Io est en éruption au voisinage de Jupiter, crachant des matériaux soufrés. © Nasa, JPL CalTech

    Une vue d'artiste du cryovolcanisme sur Europe avec une banquise épaisse de quelques kilomètres. La croûte superficielle de la banquise a subie le bombardement des rayons cosmiques ce qui a fait changer sa couleur. En arrière plan Io est en éruption au voisinage de Jupiter, crachant des matériaux soufrés. © Nasa, JPL CalTech 

    Ces observations restent toutefois encore à confirmer et à consolider, notamment dans l'infrarouge avec le télescope spatial James Webb qui sera lancé en 2018. Mais s'il s'agit bien de geysers, la découverte est très importante pour les exobiologistes. On ne connaît pas très bien l'épaisseur de la banquise qui recouvre l'océan d'Europe. Elle pourrait être de 100 kilomètres ou beaucoup moins. Dans le pire des cas, de tels geysers constitueraient des son

  • LE 24.11.2019: Actualité de la météo,de l'astronomie et de la science/Le sursaut gamma le plus puissant jamais découvert dans l’univers.

    Le sursaut gamma le plus puissant jamais découvert dans l’univers.

     

    Journaliste

    CONTENUS SPONSORISÉS

    Les sursauts gamma sont les explosions les plus puissantes que l'on puisse observer dans notre univers. Ce n'est pas une nouveauté. Mais aujourd'hui, des astronomes annoncent avoir enregistré des sursauts gamma d'une énergie record.

    Vous aimez nos Actualités ?

    Inscrivez-vous à la lettre d'information La quotidienne pour recevoir nos toutes dernières Actualités une fois par jour.

    Environ une fois par jour, quelque part dans notre univers, se produit ce que les astronomes appellent un sursaut gamma. Un flash de photons très bref, mais extrêmement énergétique. Les chercheurs pensent que ces flashs trahissent la naissance cataclysmique d'un trou noir suite à des collisions d'étoiles à neutrons ou à des explosions de supernova. Les sursauts gamma sont les explosions les plus puissantes que les astronomes connaissent. Ils libèrent généralement plus d'énergie en quelques secondes que notre Soleil durant toute sa vie.

    Le saviez-vous ?

    Les sursauts gamma ont été découverts dans les années 1960. Par des satellites destinés à surveiller le respect de l’interdiction des essais nucléaires sur Terre… 

    Mais leur détection reste délicate. Elle s'est, jusqu'à aujourd'hui, essentiellement faite grâce aux télescopes spatiaux. Malheureusement, leurs détecteurs ne sont pas sensibles aux rayons gamma de très haute énergie. Et personne ne savait donc réellement à quel point ils pouvaient être puissants. Jusqu'à ce qu'il y a quelques mois, plusieurs équipes internationales, comportant des chercheurs du CNRS, détectent enfin -- et de marnière indépendante -- des sursauts gamma d'une extrême énergie.

    Pour bien comprendre l’énergie colossale détectée par les chercheurs, sachez que la lumière visible se situe sur une plage d’énergie d’environ 1 à 3 électrons-volts. © Desy, Science Communication Lab

    Un premier sursaut gamma à l’été 2018

    Alertés par des observations de deux télescopes spatiaux de la NasaSwift et Fermi, des astronomes opérant en juillet 2018 le High Energy Stereoscopic System (HESS), installé en Namibie, ont été les premiers à détecter, depuis le sol, des rayons gamma de haute énergie issus d'un événement baptisé GRB 180720B et survenu à pas moins de six milliards d'années-lumière de notre Terre. Près de 120 photons ont été enregistrés à une énergie comprise entre 100 et 440 GeV -- soit entre 100 et 440 milliards d'électrons-volts. Captés, qui plus est, près de dix heures après le déclenchement du sursaut gamma et pendant une durée de deux heures.

    De quoi prouver pour la première fois la présence de particules accélérées à des énergies extrêmes dans les sursauts gamma. Mais aussi de mettre en évidence que ces particules existent encore, ou sont créées, longtemps après le sursaut initial. L'hypothèse la plus vraisemblable est que l'explosion initiale engendre la formation d'un jet de plasma qui, lorsqu'il rencontre le milieu interstellaire, ralentit et crée une onde de choc qui agit alors comme un « accélérateur de particules cosmique ».

    Les chercheurs pensent ainsi que des particules chargées sont déviées dans les champs magnétiques puissants générés par l'explosion. Elles émettent alors un rayonnement dit synchrotron, semblable au rayonnement produit dans les accélérateurs de particules sur Terre. Pour atteindre les niveaux d'énergie détectés en juillet 2018 par les astronomes, les photons synchrotron entrent probablement en collision avec les particules rapides qui les ont générés, dans une étape qualifiée de diffusion de Compton inverse.

    Un des sursauts gamma de très haute énergie, tels que vus par le réseau de télescopes HESS. La croix rouge indique la position du sursaut, déterminée à partir des mesures en optique. © Abdalla et al., HESS Collaboration

    Un des sursauts gamma de très haute énergie, tels que vus par le réseau de télescopes HESS. La croix rouge indique la position du sursaut, déterminée à partir des mesures en optique. © Abdalla et al., HESS Collaboration 

    Mieux comprendre ces phénomènes extrêmes

    Les chercheurs du Major Atmospheric Gamma Imaging Cherenkov Telescope (Magic) de La Palma (Espagne) ont, quant à eux, enregistré, en janvier 2019, des rayons issus d'un autre sursaut gamma, baptisé GRB 190114C et survenu à quelque quatre milliards d'années-lumière de nous. « Nous avons commencé à observer l'événement seulement 57 secondes après sa détection initiale et en 20 minutes, nous avons enregistré environ mille photons d'énergies comprises entre 0,2 et 1 TeV -- soit entre 200 et 1.000 milliards d'électrons-volts. Ce sont de loin les photons les plus énergétiques jamais découverts autour d'un sursaut gamma », raconte Cosimo Nigro, un astronome du groupe Magic.

    Pour comprendre l'origine de tels photons, une troisième équipe a choisi d'étudier la région à l'aide du télescope spatial Hubble. Une région dans laquelle se trouvent deux galaxies en interaction. « Nos observations suggèrent que l'événement s'est produit au centre d'une galaxie massive et brillante, dans un environnement très dense », explique Andrew Levan, astronome à l'université Radboud (Pays-Bas). « C'est inhabituel et cela pourrait expliquer la puissance de l'émission. »

    Au-delà de cela, les astronomes se sont aussi aperçus qu'il leur manquait auparavant environ la moitié du « budget énergétique » des sursauts gamma. Car les mesures montrent que l'énergie libérée dans les rayons gamma de très haute énergie est comparable à la quantité de rayonnement émise à toutes les énergies inférieures prises ensemble. Un résultat qualifié de « remarquable » par les chercheurs. Et de quoi probablement faire progresser la compréhension qu'ils ont de ce type de phénomène violent. Avant même la mise en service de la prochaine génération d'observatoires à rayons gamma comme le Cherenkov Telescope Array qui sera constitué de 100 instruments répartis sur deux sites, l'un dans l'hémisphère nord, à La Palma, et l'autre dans l'hémisphère sud, du côté du Cerro Paranal (Chili). Ses premières observations ne devraient toutefois pas intervenir avant 2023.

    CE QU'IL FAUT RETENIR

    • Les sursauts gamma sont les explosions les plus puissantes de notre univers.
    • Et des astronomes viennent d’enregistrer, autour de deux de ces événements, des énergies record.
    • De quoi éclairer d’un nouveau jour les mécanismes de ces phénomènes violents.

    POUR EN SAVOIR PLUS

    Un sursaut gamma pulvérise le record des explosions cosmiques

    La plus formidable explosion jamais observée vient d'être méticuleusment analysée. Convertissez en énergie la masse de cinq soleils : c'est ce que le sursaut GRB 080916C a libéré, sous forme de rayons X et gamma, en soixante secondes ! La luminosité a largement dépassé ce qu'auraient produit 8.000 étoiles explosant en supernovae. Pour les astrophysiciens, c'est une aubaine car cet événement fournit un test de la gravitation quantique.

    Article de Laurent Sacco paru le 23/02/2009

    Cette image de GRB 080916C dans le domaine gamma(couvrant un angle de 60 degrés) a été obtenue par le Large Area Telescope de Fermi dans les 100 secondes qui ont suivi son apparition le 16 septembre 2008 à 0 h 12 mn 45 s TU. Les points colorés représentent les rayons gamma de différentes énergies : moins de 100 millions d'eV (points rouges), 100 millions à 1 milliard d'eV (points verts), plus de 1 milliard d'eV (points bleus). La lumière visible transporte une énergie d'environ 2 à 3 électron-volts (eV). Crédit : CNRS-Nasa/DOE/Fermi LAT Collaboration

    Cette image de GRB 080916C dans le domaine gamma(couvrant un angle de 60 degrés) a été obtenue par le Large Area Telescope de Fermi dans les 100 secondes qui ont suivi son apparition le 16 septembre 2008 à 0 h 12 mn 45 s TU. Les points colorés représentent les rayons gamma de différentes énergies : moins de 100 millions d'eV (points rouges), 100 millions à 1 milliard d'eV (points verts), plus de 1 milliard d'eV (points bleus). La lumière visible transporte une énergie d'environ 2 à 3 électron-volts (eV). Crédit : CNRS-Nasa/DOE/Fermi LAT Collaboration 

    C'était le 16 septembre 2008 lorsque les instruments à bord du satellite Fermi ont détecté un sursaut gamma en direction de la constellation de la Carène. Une batterie de télescopes au sol et en orbite, comme ceux du satellite Swift. L'instrument Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) équipant le télescope de 2,2 mètres Max Planck de l'ESO à La Silla au Chili ne tardèrent pas à prendre le relais des détecteurs Gamma-ray Burst Monitor et Large Area Telescope de Fermi.

    En plus de donner une estimation de la puissance du sursaut gamma, ces instruments ont permis d'estimer sa distance à 12,2 milliards d'années-lumière et de découvrir que la matière expulsée par l'explosion devait se déplacer à la vitesse de 99,9999% de celle de la lumière.

    Observé en rayons X par les instruments de Swift en orbite, le rayonnement rémanent de GRB 080916C est bien visible en couleurs orange et jaune. Crédit : NASA/Swift/Stefan Immler

    Observé en rayons X par les instruments de Swift en orbite, le rayonnement rémanent de GRB 080916C est bien visible en couleurs orange et jaune. Crédit : NASA/Swift/Stefan Immler 

    L'origine probable d'une telle puissance est une hypernova, c'est-à-dire une étoile très massive dépassant les 40 masses solaires dont le cœur s'est effondré si rapidement qu'un trou noir est apparu, entraînant l'émission de deux jets de matière incroyablement énergétiques.

    Les photons gamma émis sont tout aussi impressionnants car leurs énergies s'étendent sur une gamme allant de 3.000 à 5 milliards de fois celle de la lumière visible. Quelques photons atteignant même une énergie 30 milliards de fois supérieure ont même été enregistrés par les instruments de Fermi.

    Le plus fascinant n’est peut-être pas là…

    En effet, Fermi a enregistré des décalages de l'ordre de 5 secondes entre les temps d'arrivée de photons gamma de différentes énergies. Les processus de magnétohydrodynamique relativiste à l'œuvre dans une hypernova sont complexes et ces retards pourraient être dus à l'environnement particulier formé lors de l'explosion ou au processus d'émission des photons gamma eux-mêmes. Ce n'est d'ailleurs pas la première fois que de tels retards sont observés.

    Le 17 septembre 2008, 31,7 heures après l'apparition du sursaut gamma GRB 080916C le télescope de 2,2m Max Planck de l'ESO à La Silla (Chili) a pris cette image dans l'infrarouge proche. Le GRB est entouré d'un cercle blanc et il s'agit du rayonnement rémanent du sursaut gamma. Crédit : MPE/GROND

    Le 17 septembre 2008, 31,7 heures après l'apparition du sursaut gamma GRB 080916C le télescope de 2,2m Max Planck de l'ESO à La Silla (Chili) a pris cette image dans l'infrarouge proche. Le GRB est entouré d'un cercle blanc et il s'agit du rayonnement rémanent du sursaut gamma. Crédit : MPE/GROND 

    Toutefois, les théories de gravitation quantique, comme la gravitation quantique en boucles (LQG), et surtout la théorie des supercordes prédisent l'apparition de décalage de ce genre !

    Le grand théoricien John Ellis et ses collègues avaient été conduits, par leurs calculs sur la structure en écume de l'espace-temps à l'aide de la théorie des supercordes, à la conclusion que sur des distances cosmologiques et pour des photons gammas très énergétiques, la modification de la vitesse de propagation de ces derniers conduisait à une accumulation de retards infinitésimaux mais finalement observables.

    Les observations de retards dans le rayonnement de GRB 080916C s'ajoutent à celles déjà connues et nul doute que d'autres les rejoindront dans les années à venir, notamment grâce à Fermi. Si l'on pouvait montrer que ces délais augmentent avec la distance et conduisent tous à une même estimation de l'énergie de Planck, on saurait alors que l'on est bel et bien en présence d’effets de gravitation quantique.

    Source: https://www.futura-sciences.com/
    Lien: https://www.futura-sciences.com/sciences/actualites/astronomie-sursaut-gamma-plus-puissant-jamais-decouvert-univers-18354/#utm_content=futura&utm_medium=social&utm_source=facebook.com&utm_campaign=futura